

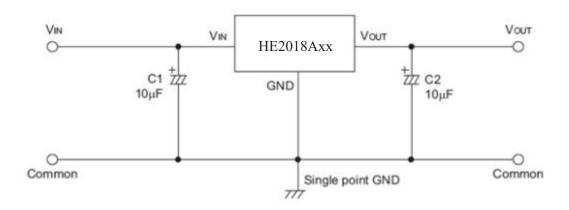
Features

- Good Transient Response
- Output voltage accuracy: tolerance $\pm 2\%$
- SOT223, and TO252 package
- PSRR:65dB@1KHz

- High input voltage (up to 18V)
- Low Power Consumption: 2μA (Typ)
- Maximum Output Current: 1000mA
- Voltage drop:1000mV@1000mA(3.3V)

Applications

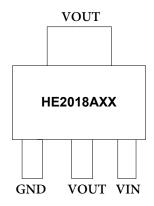
- Portable, Battery Powered Equipmpm
- Microcontroller Applications
- Smoke detector and sensor
- Audio/Video equipment
- Weighting Scales
- Home Automation


General Description

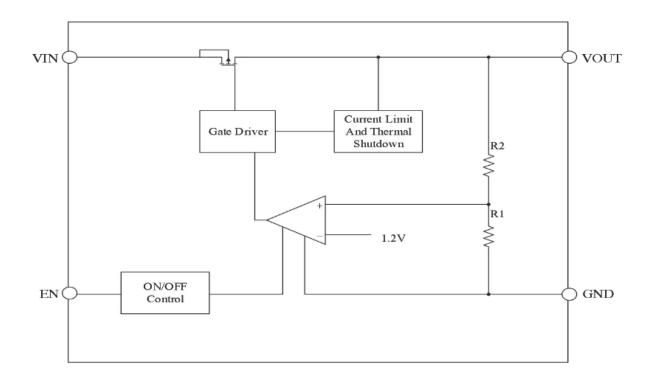
The HE2018 series is a high voltage, ultralow-power, low dropout voltage regulator. The device can deliver 1000mA output current with a dropout voltage of 360mV and allows an input voltage as high as 18V. The typical quiescent current is only 2µA. The device is available in fixed output voltages of 3.3 and 5.0V. The device features integrated short-circuit and thermal shutdown protection. Although designed primarily as fixed voltage regulators, the device can be used with external components to obtain variable voltages.

Selection Table

Part No.	Output Voltage	Package	Marking
HE2018A33FR	3.3V	SOT223	
HE2018A50FR	5.0V	SOT223	
HE2018A33GR	3.3V	TO252	
HE2018A50GR	5.0V	TO252	


Application Circuits

Pin Assignment


SOT223 (Top View)

TO252 (Top View)

Functional Block Diagrara

Absolute Maximum Ratings (1)(2)

Parameter		Symbol	Maximum Rating	Unit	
Input Voltage		Vin	V _{SS} -0.3~V _{SS} +18.0	V	
		Vout	V _{SS} -0.3~V _{SS} +6.0	V	
Output Cur	rent	Іоит	1000	mA	
Dawer Dissipation	SOT223	Pd	1200	mW	
Power Dissipation	TO252	ru 	1800		
Thermal Resistance	SOT223	R _{θJA} ⁽³⁾	66	°C/W	
	TO252	HeJA`´	55	°C/W	
Operating Temperature		Topr	-40~85	$^{\circ}$	
Storage Temperature		Tstg	-40~125	$^{\circ}$	
Soldering Temperature & Time		Tsolder	260℃, 10s	·	

Note (1): Exceeding these ratings may damage the device.

ESD Ratings

Item	Description	Value	Unit
	Human Body Model (HBM)		
V(ESD-HBM)	ANSI/ESDA/JEDEC JS-001-2014	±4000	V
	Classification, Class: 2		
	Charged Device Mode (CDM)		
V(ESD-CDM)	ANSI/ESDA/JEDEC JS-002-2014	±200	V
	Classification, Class: C0b		
ILATCH-UP	JEDEC STANDARD NO.78E APRIL 2016	1150	m Λ
	Temperature Classification, Class: I	±150	mA

ESD testing is performed according to the respective JESD22 JEDEC standard. The human body model is a 100 pF capacitor discharged through a $1.5k\Omega$ resistor into each pin. The machine model is a 200pF capacitor discharged directly into each pin.

Recommended Operating Conditions

Parameter	MIN.	MAX.	Units
Supply voltage at V _{IN}		15	V
Operating junction temperature range, Tj	-40	125	°C
Operating free air temperature range, TA	-40	85	°C

Note: All limits specified at room temperature (TA = 25°C) unless otherwise specified. All room temperature limits are 100% production tested. All limits at temperature extremes are ensured through correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

Ver1.2 3 Aug 3,2022

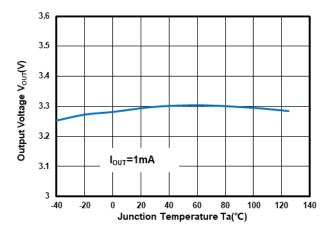
Note (2): The device is not guaranteed to function outside of its operating conditions

Note (3): The package thermal impedance is calculated in accordance to JESD 51-7.

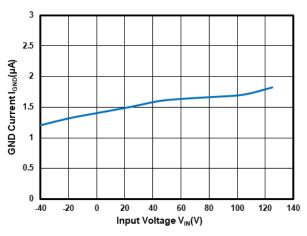
Electrical characteristics

 $(At\ T_A \!\!=\!\! 25^\circ\!C, C_{IN} \!\!=\!\! 1uF, V_{IN} \!\!=\!\! V_{OUTNOM} \!\!+\! 1.0V, C_{OUT} \!\!=\!\! 10\mu F, unless\ otherwise\ noted)$

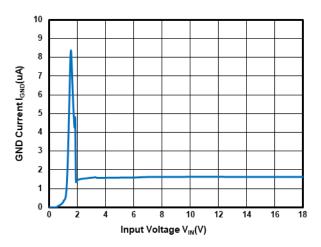
PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP.	MAX.	UNIT	
Output Voltage*1	V _{OUT(S)}	$V_{IN} = V_{OUT(S)} + 2V$, $I_{OUT} = 1mA$		V _{OUT(S)} ×0 .98	V _{OUT(S)}	V _{OUT(S)} ×1 .02	V	
Dropout Voltage*2	V _{DROP}			I _{OUT} =1mA		3	8	mV
Dropout Voltage -	V DROP	V _{OUT(S)} =3.3	V	I _{OUT} =1A		1000	1300	IIIV
Line Regulation	$\frac{\Delta V_{OUT}}{\Delta V_{IN} \bullet V_{OUT(s)}}$	V _{OUT(S)} +2V≤V _{IN} ≤18V I _{OUT} =1mA			0.01	0.02	%/V	
Load Regulation	41/	V _{IN} =V _{OUT(S)} +2V		V _{OUT(S)} ≤5.0V		80		m\/
Load Regulation	ΔV_{OUT2}	1mA≤I _{OUT} ≤	1A	V _{OUT(S)} >5.0V		90		- mV
Temperature Stability	$\frac{\Delta V_{OUT}}{\Delta T_a \bullet V_{OUT(s)}}$		٠,	V,I _{OUT} =1mA .≤125℃		±50		ppm/℃
GND Current I _{GND}		no load V _{OUT(S)} ≤5.0V		1.0	2.0	3.0	4	
		I _{OUT} =100mA			420		μA	
Shutdown Current	Іѕнит	V _{IN} =18V, V _{EN} =0			0.1	1		
Input Voltage	V_{IN}			-	2.2		18	V
Maximum Output Current	I _{OUTMAX}			1				
Current Limit*3	I _{LIM}	$V_{IN}=V_{OUT(S)}+2V,$ $V_{OUT}=0.95 \times V_{OUT(S)}$			1.5		Α	
5 0 1		f=10Hz, I _{OUT} =10mA			75			
Power Supply Rejection Ratio*4	PSRR	f=100Hz, I _{OUT} =10mA			80		dB	
rtojoeden rtado		f=1kHz, I _{OUT} =10mA			65			
Short Circuit Current*5	Ishort	V _{IN} =V _{OUT(S)} +2.0V V _{OUT} =0V			30		mA	
EN 'H' Level Voltage	V _{ENH}			1.5		18	.,	
EN 'L' Level Voltage	V _{ENL}			0		0.5	V	
EN 'H' Level Current	I _{ENH}	V _{IN} =18V, V _{EN} =V _{IN}		-0.1		0.1		
EN 'L' Level Voltage	I _{ENL}	V _{IN} =18V, V _{EN} =0		-0.1		0.1	uA	
Over Temperature Protection	ОТР	I _{OUT} =1mA			150		°C	

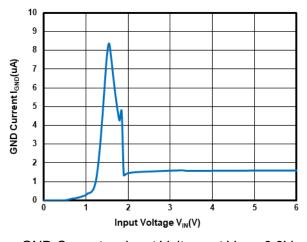

Notes:

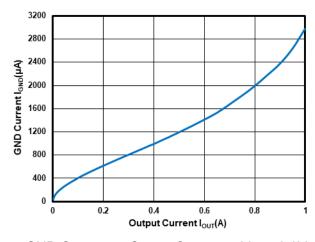
- 1. $V_{OUT(S)}$: Output voltage when V_{IN} = V_{OUT} +2V, I_{OUT} =1 mA.
- 2. $V_{DROP}=V_{IN1}$ $(V_{OUT(S)}\times 0.98)$ where V_{IN1} is the input voltage when $V_{OUT}=V_{OUT(S)}\times 0.98$.
- 3. I_{LIM} : Output current when $V_{IN}=V_{OUT(S)}+2V$ and $V_{OUT}=0.95*V_{OUT(S)}$.
- 4. PSRR was measured for $V_{OUT(S)} = 3.3V$ and $V_{IN} = 5.3V$.
- 5. VOUT pin should be shorted to GND pin, and the impedance between them is less than 0.1 ohm

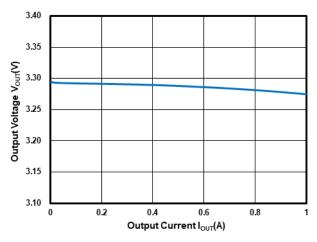


■ Typical Performance Characteristics:


Test Conditions: $V_{IN}=V_{OUT}+2.0V$, $C_{IN}=2.2\mu F$, $C_{OUT}=2.2\mu F$, unless otherwise indicated.

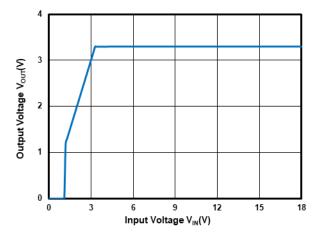

Output Voltage vs Temperature at V_{OUT}=3.3V


GND Current vs Temperature at V_{OUT}=3.3V


GND Current vs Input Voltage at V_{OUT}=3.3V

GND Current vs Input Voltage at Vout=3.3V

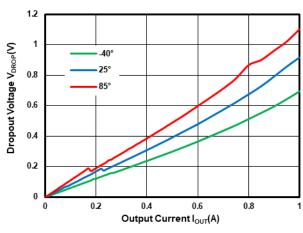
GND Current vs Output Current at V_{OUT}=3.3V

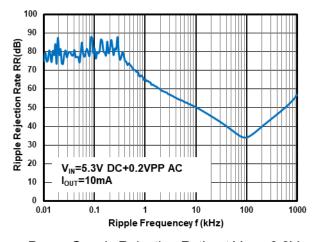


Output Voltage vs Output Current at Vout=3.3V


Ver1.2 5 Aug 3,2022

■ Typical Performance Characteristics (Continued):


Test Conditions: $V_{IN}=V_{OUT}+2.0V$, $C_{IN}=2.2\mu F$, $C_{OUT}=2.2\mu F$, unless otherwise indicated.


Output Voltage vs Input Voltage at Vout=3.3V

Output Current Fold-back at V_{OUT}=3.3V

Dropout Voltage vs Temperature at V_{OUT}=3.3V

Power Supply Rejection Ratio at V_{OUT}=3.3V

Application Guideline

Input Capacitor

A $10\mu F$ ceramic capacitor is recommended to connect between V_{DD} and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both VIN and GND.

Output Capacitor

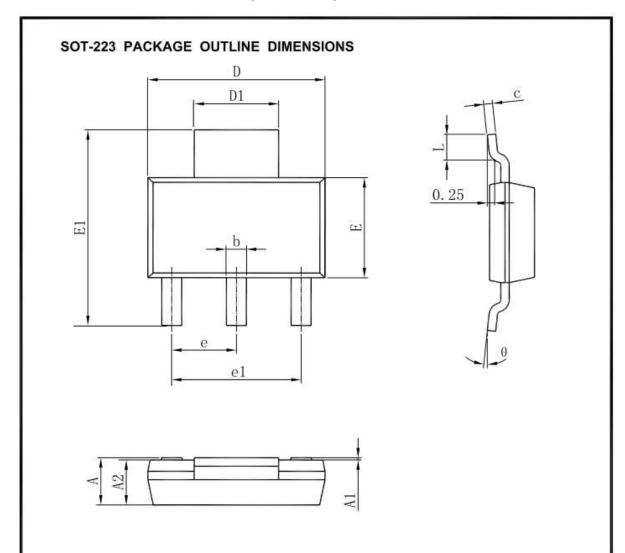
An output capacitor is required for the stability of the LDO. The recommended output capacitance is 10µF, ceramic capacitor is recommended, and temperature characteristics are X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to VOUT and GND pins.

Dropout Voltage

The dropout voltage refers to the voltage difference between the VIN and VOUT pins while operating at specific output current. The dropout voltage VDROP also can be expressed as the voltage drop on the pass-FET at specific output current (IRATED) while the pass-FET is fully operating at ohmic region and the pass-FET can be characterized as an resistance RDS(ON). Thus the dropout voltage can be defined as (VDROP = VIN - VOUT = RDS(ON) x IRATED). Fornormal operation, the suggested LDO operating range is (VIN > VOUT + VDROP) for good transient response and PSRR ability. Vice versa, while operating at the ohmic region will degrade the performance severely.

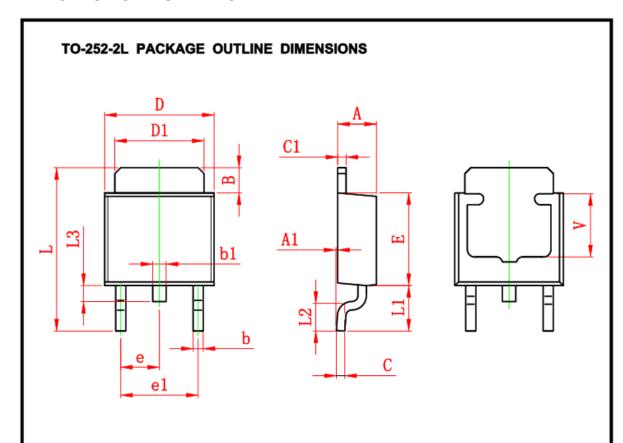
Thermal Application

For continuous operation, do not exceed the absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated as below: TA=25°C, PCB,


The max PD= (125°C - 25°C) / (Thermal Resistance °C/W)

Power dissipation (PD) is equal to the product of the output current and the voltage drop across the output pass element, as shown in the equation below:

 $PD = (VIN - VOUT) \times IOUT$


■ PACKAGING INFORMATION(Continued)

Symbol	Dimensions In	Millimeters	Dimensions	In Inches
	Min	Max	Min	Max
Α	1.520	1.800	0.060	0.071
A1	0.000	0.100	0.000	0.004
A2	1.500	1.700	0.059	0.067
b	0.660	0.820	0.026	0.032
С	0.250	0.350	0.010	0.014
D	6.200	6.400	0.244	0.252
D1	2.900	3.100	0.114	0.122
E	3.300	3.700	0.130	0.146
E1	6.830	7.070	0.269	0.278
е	2.300(BSC)	0.091(BSC)	
e1	4.500	4.700	0.177	0.185
L	0.900	1.150	0.035	0.045
θ	0°	10°	0°	10°

■ PACKAGING INFORMATION

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	2.200	2.400	0.087	0.094	
A1	0.000	0.127	0.000	0.005	
В	1.350	1.650	0.053	0.065	
b	0.500	0.700	0.020	0.028	
b1	0.700	0.900	0.028	0.035	
С	0.430	0.580	0.017	0.023	
c1	0.430	0.580	0.017	0.023	
D	6.350	6.650	0.250	0.262	
D1	5.200	5.400	0.205	0.213	
E	5.400	5.700	0.213	0.224	
е	2.300	TYP.	0.091 TYP.		
e1	4.500	4.700	0.177	0.185	
L	9.500	9.900	0.374	0.390	
L1	2.550	2.900	0.100	0.114	
L2	1.400	1.780	0.055	0.070	
L3	0.600	0.900	0.024	0.035	
V	3.800	REF.	0.150	REF.	